Santol (Sandoricum koetjape) Peelings as an alternative source for ethanolby | 07-10-2014 20:01 |
---|
Today?s world poses an era where technology is both comfort and need. In the enjoyment of these benefits, energy has been harnessed mostly from non-renewable energy resources. While energy is surging in demand, by-products included pollution and other harmful effects. People need to shift their views to the alternative energy resources such as ethanol, alcohol extracted from fruits. Food consumption should never be sacrificed, therefore, using fruit wastes is wiser. Santol is locally abundant fruit with popularly eaten pulps and normally thrown peelings. The study focuses on extracting ethanol from Santol peelings, using white and brown sugar, and comparing it to the commercial in flame propagation, duration, temperature difference, and heat content with varying concentrations. The study is an experiment divided into three phases, fermentation, distillation, and the flame testing. Gathered data has been tabulated and treated with Z test and Randomized Block Design. With the findings, Santol peelings can be a potential source of ethanol. Energy is the prime requirement for us to enjoy the benefits of technology. Through the years, its demand has been surging while its supply experiences shakes. Energy sources spring from coal, natural gas, oils, and many other nonrenewable energy resources. The depletion of these sources is inevitable as their recovery rate is much slower than the consumption rate of the people. Apart from the depleting issue, nonrenewable energy resources have been giving pollutants and risks, responsible for the manmade calamities and tragedies worldwide. There is a need to divert our views towards energy sources that do not sacrifice the quality of living that we long while promoting a much sustainable environment where all organisms thrive and prosper. Ethanol, a renewable energy resource, is combined with gasoline (gasohol) and used as automotive fuel. Though, ethanol is chiefly produced from raw materials fitter for human consumption. Ethanol is extracted from fruits, might as well, the fruit wastes such as peelings can generate ethanol. Santol (Sandoricum koetjape) is among the locally abundant fruit in the country. Its pulp is popularly eaten while its peelings are naturally thrown away. Thus the project is called to explore the potential of ethanol from Santol peelings and comparing its ethanol to that of the commercial one. Extraction of the Santol ethanol had undergone three phases. First was the fermentation phase, then the distillation phase, and lastly, the testing phase. During the fermentation process, the santol peelings were chopped into fine pieces. For every two cups of the chopped peelings, one cup of distilled water was added. To produce the mash, the chopped peelings, together with the distilled water were blended. We used the cheese cloth in order to filter the juice from the mash. For every four cups of juice, we added one cup of sugar. Since we had two set-ups, the first set-up was added with brown sugar while the other one was added with white sugar. The mixture was stirred in order to completely dissolve the sugar. The mixture was then pasteurized at 60? in 30 minutes in order to eliminate bacteria that might alter the process. After pasteurizing the mixture, it was cooled to room temperature. When the temperature reached its steady state, we added the baker?s yeast. For every 1.125liters of the pasteurized mixture, only 1/8 teaspoon of the baker?s yeast must be added. The mixture was then placed in a sealed fermenting jar and kept in a dark place at room temperature in two weeks to complete the fermentation. The distillation process cannot be done if the mixture is not completely fermented. Necessary equipment is also needed in order to start distilling the fermented mixture. During this process, 100ml of the fermented mixture was poured into the distilling flask and was heated up to 78.5? in order to evaporate and condense the ethanol. Testing was done using the extracted ethanol from the distillation procedure and also with the commercial one. The tests conducted were for the flame propagation, flame duration, temperature differences and heat content. In testing for the flame propagation, we used a 20-inch cotton strip. The cotton strip was fully dipped into the Erlenmeyer flask with the 3:2 ratio or 3ml of the santol ethanol and 2ml of unleaded gasoline mixture. The cotton absorbed all the liquid mixture. The wet cotton strip was then held on a flat surface and ignited from the tip using a match. The conduct of the flame duration and temperature differences was also done during the procedure. The procedure for the heat content was done after gathering the necessary data for the temperature differences. After the researchers have gathered and interpreted the data and performed calculations, it was concluded that Santol peelings have the potential to be a source of ethanol. Considering the minimal acquisition cost of the experimental ethanol and the comparative performance it has showed for the flame duration, flame propagation, temperature difference, and the heat content in relation to the commercially available one, a latent source of ethanol can be the discarded peelings from this fruit and may serve as alternative for the traditional sources of ethanol, which currently spring from food sources such as corn, bananas, and others. The concentration of the experimental ethanol does not affect the performance in flame duration, temperature difference, and heat content while effects in the flame propagation is observed. Then, the concentrations do not generally affect on the performance. For economical reasons, one can use the greater concentration of Santol ethanol to save resources without sacrificing the quality of the fuel. Concurrently, this study will significantly help in the research of finding better alternatives and greener choices towards a more sustainable environment. |