0
Comments
Ecosystem dynamics |
---|
I found this in Internet
Ecosystem dynamics Ecosystems are dynamic entities—invariably, they are subject to periodic disturbances and are in the process of recovering from some past disturbance. When an ecosystem is subject to some sort of perturbation, it responds by moving away from its initial state. The tendency of a system to remain close to its equilibrium state, despite that disturbance, is termed its resistance. On the other hand, the speed with which it returns to its initial state after disturbance is called its resilience. From one year to another, ecosystems experience variation in their biotic and biotic environments. A drought, an especially cold winter and a pest outbreak all constitute short-term variability in environmental conditions. Animal populations vary from year to year, building up during resource-rich periods and crashing as they overshoot their food supply. These changes play out in changes in NPP, decomposition rates, and other ecosystem processes. Longer-term changes also shape ecosystem processes—the forests of eastern North America still show legacies of cultivation which ceased 200 years ago, while methane production in eastern Siberian lakes is controlled by organic matter which accumulated during the Pleistocene. Disturbance also plays an important role in ecological processes. F. Stuart Chapin and coauthors define disturbance as "a relatively discrete event in time and space that alters the structure of populations, communities and ecosystems and causes changes in resources availability or the physical environment". This can range from tree falls and insect outbreaks to hurricanes and wildfires to volcanic eruptions and can cause large changes in plant, animal and microbe populations, as well soil organic matter content. Disturbance is followed by succession, a "directional change in ecosystem structure and functioning resulting from biotic ally driven changes in resources supply." The frequency and severity of disturbance determines the way it impacts ecosystem function. Major disturbance like a volcanic eruption or glacial advance and retreat leave behind soils that lack plants, animals or organic matter. Ecosystems that experience disturbances that undergo primary succession. Less severe disturbance like forest fires, hurricanes or cultivation result in secondary succession. More severe disturbance and more frequent disturbance result in longer recovery times. Ecosystems recover more quickly from less severe disturbance events. The early stages of primary succession are dominated by species with small propagates (seed and spores) which can be dispersed long distances. The early colonizers—often algae, cyan bacteria and lichens—stabilize the substrate. Nitrogen supplies are limited in new soils, and nitrogen-fixing species tend to play an important role early in primary succession. Unlike in primary succession, the species that dominate secondary succession are usually present from the start of the process, often in the soil seed bank. In some systems the succession pathways are fairly consistent, and thus, are easy to predict. In others, there are many possible pathways—for example, the introduced nitrogen-fixing legume, Myrica faya, alters successional trajectories in Hawaiian forests. The theoretical ecologist Robert Ulanowicz has used information theory tools to describe the structure of ecosystems, emphasizing mutual information (correlations) in studied systems. Drawing on this methodology and prior observations of complex ecosystems, Ulanowicz depicts approaches to determining the stress levels on ecosystems and predicting system reactions to defined types of alteration in their settings (such as increased or reduced energy flow, and eutrophication. |
|
0 Comments